CBCS SCHEME

USN								0,00	15ELN15/25
	1	- 1		1		l	1		

First/Second Semester B.E. Degree Examination, Dec.2018/Jan.2019 Basic Electronics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Draw and explain the V-I characteristics of a Silicon diode. (05 Marks)
 - b. Find the value of the series resistance 'R_S' required to drive a forward current of 1.25mA through a germanium diode from a 4.5V barrtery. Write the circuit diagram showing all the values.

 (04 Marks)
 - c. With circuit diagram, explain the operation of center-tapped full wave rectifier. Draw input and output waveforms. (07 Marks)

OR

- 2 a. Design the Zener regulator for the following specifications. Output voltage = 5V, load current = 20mA, Zener voltage $P_{Z(min)} = 500 \text{ mW}$ and input voltage = $12\text{V} \pm 3\text{V}$. (05 Marks)
 - b. Draw CE circuit and sketch the input and output characteristics also explain the operating regions by indicating them on the characteristics curve. (08 Marks)
 - c. Calculate the values of I_C and I_E for a BJT with $\alpha = 0.97$ and $I_B = 50 \mu A$. Also determine the value of β_{dc} .

Module-2

- a. Determine the operating point for a Silicon transistor biased by base bias method, for $\beta = 100$, $R_C = 2.5 k\Omega$, $R_B = 500 k\Omega$ and $V_{CC} = 20 V$. Also draw the DC load line. (06 Marks)
 - b. With a net circuit diagram. Explain the voltage divider bias circuit.

(07 Marks)

c. Compare base bias and voltage divider bias circuits.

(03 Marks)

OR

4 a. List the characteristics of an ideal op-amp.

(05 Marks)

- b. A non-inverting amplifier has input resistance of $10k\Omega$ and feedback resistance of $60 k\Omega$? With a load resistance of $47k\Omega$. Draw the circuit and calculate the output voltage, voltage gain, load current, when the input voltage is 1.5V. (06 Marks)
- c. Derive the expression for 3-input summing amplifier.

(05 Marks)

Module-3

5 a. Compare analog and digital signal.

(04 Marks)

- b. Convert:
 - i) $(1AD.EO)_{16} = (?)_{10} = (?)_8$
 - ii) $(1101101)_2 = (?)_{10}$
 - iii) $(69)_{10} = (?)_2$

(05 Marks)

- c. Perform the subtraction:
 - i) (10010)₂ and (1101) using 1's complement method
 - ii) $(10010)_2$ and $(01101)_2$ using 2's complement method.

(07 Marks)

OR

6 a. State and prove DC – Morgan's theorems for 4 variables.

(08 Marks)

- b. Simplify the following expression and realize using basic gates:
 - $Y = A(\overline{ABC} + ABC).$

(04 Marks)

c. Realize half adder using only NAND gate

(04 Marks)

Module-4

7 a. Define flip-flop. Give the difference between a later and flip-flop.

(04 Marks)

b. Explain the working of a NOR gate later.

(06 Marks)

c. With diagram and truth table explain clocked RS -flip-flop.

(06 Marks)

OR

8 a. List the important features of 8051 microcontroller.

(03 Marks)

b. Explain the architecture of 8051 microcontroller.

(07 Marks)

c. With block diagram, explain the micro-controller based stepper motor control system.

(06 Marks)

Module-5

- 9 a. With a neat block diagram, explain the elements of communication system. (06 Marks)
 - b. A carrier of 1MHz, with 400W of its power is amplitude modulated with a sinusoidal signal of 2500Hz. The depth of modulation is 75%. Calculate the sideband frequencies, the band width, the power in the side bands and the total power in the modulated wave. (05 Marks)
 - e. Give the comparison between AM and FM.

(05 Marks)

OR

- 10 a. What is a Transducer? Distinguish between active and passive transducer. (05 Marks)
 - b. A termistor has a material constant ' β ' of 2000/° K. If its resistance is 100 k Ω at 300°k temperature, what will be the resistance at 500°k? (04 Marks)
 - c. Explain the construction and the principle of operation of LVDT. Also list the advantages of LVDT. (07 Marks)

* * * * *